Development of Multi-Electrode Array (MEA) Assay for Phenotypic Drug Screening

Juha Kammonen¹, Sarah Williams¹, Larissa Butler¹, Dario Magnani¹, Jeremy Anton¹, Christine Mansat-Bhattacharyya¹, Gulbahar Gulbahce¹, Russell Burley¹, Olena Fedorenko^{1,} Mariangela Iovino¹

¹Charles River, Chesterford Research Park, Saffron Walden, CB10 1XL, UK

1 ABSTRACT

Multi-electrode arrays (MEA) can be utilised in drug discovery to provide a link from *in vitro* screening to *in vivo* testing, safety assays, or by modelling the functional impacts of disease mutations. Here we describe the characterisation of human iPSC derived cortical neuron co-cultures, which includes glutamatergic excitatory neurons, GABAergic inhibitory neurons, and astrocytes (NeuCyte SynFire), using the Maestro Pro (Axion BioSystems). These co-cultures were then used for compound screening and induction of seizure phenotypes.

Immunocytochemistry shows the presence of both Glutamergic (VGLUT1) and GABAergic (GABA) neuronal markers along with astrocytic markers (GFAP). Over the course of 28 days, the neuronal co-culture shows an increase in mean firing rate as well as the development of spontaneous oscillatory activity (network bursts) with increasing synchronicity.

Diazepam (GABA_A agonist) caused a disruption of synchronous activity, decrease in mean firing rate and network burst activity, with a IC₅₀ comparable to literature data¹. Seizurogenic activity was produced in response to bicuculine (GABA_A antagonist) as shown by increase in network burst frequency and duration. These data show the suitability of human iPSC-derived neurons for compound profiling and assessment of seizurogenic liability.

network IBI CoV.

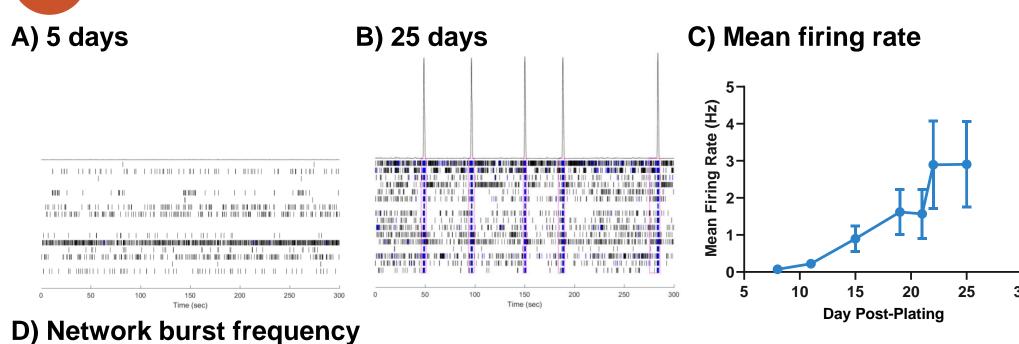

CO-CULTURE CHARACTERISTION A) Hoescht B) Hoescht GAGA GAGA A CO-CULTURE CHARACTERISTION A) Hoescht CO-CULTURE CHARACTERISTION CO-CULTURE CHARACTERISTION CO-CULTURE CHARACTERISTION CO-CULTURE CHARACTERISTION CO-CULTURE CHARACTERISTION

Figure 1. Human iPSC-derived neurons co-culture characterisation.

The presence of individual cell types within the culture were identified by antibody staining. (A). Nuclei stain (Hoescht, blue), glutamergic marker (vGlut1, red), and axonal marker (β3-Tub/TuJ1, green). (B). Nuclei stain (Hoescht, blue), GABAergic marker (GABA, red), and axonal marker (β3-Tub/TuJ1, yellow), and astrocyte marker (GFAP, yellow). Scale bar is 100 μm.

A) Diazepam

DEVELOPMENT OF NETWORK ACTIVITY

(H) 0.03 0.02 0.00 5 10 15 20 25 30 Day Post-Plating

■ 0.3% DMSO

Diazepam 2.5 μM

Diazepam 625 nM

Diazepam 125 nM

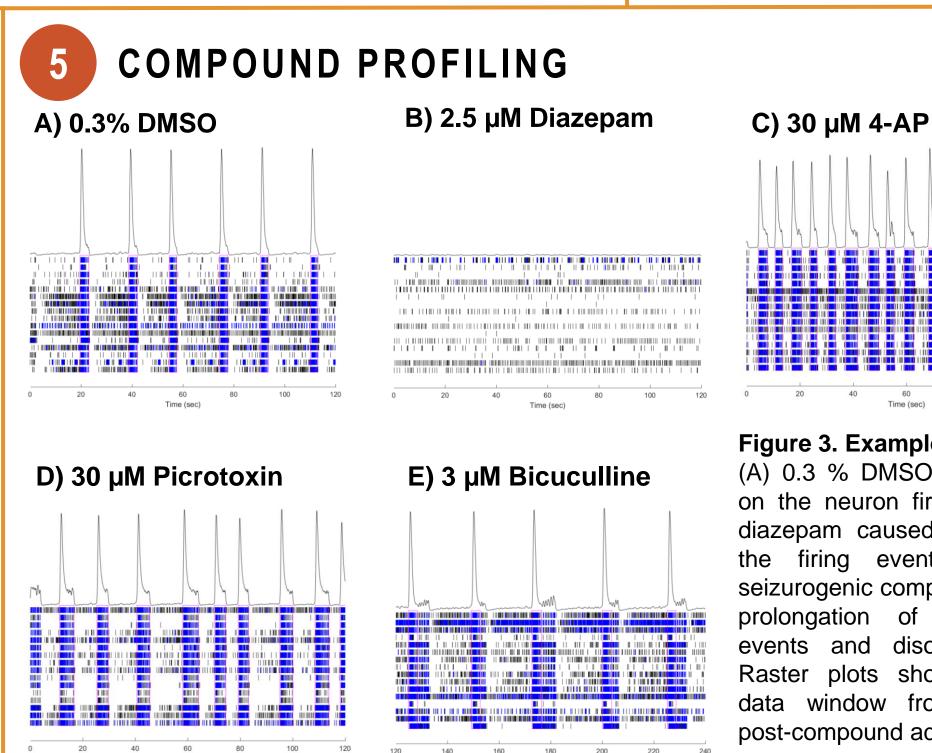
Diazepam 9 nM

Figure 2. Development of neuron firing over time.

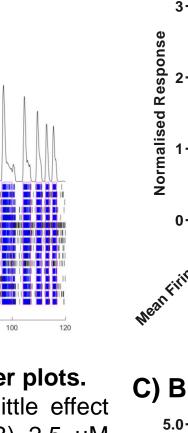
(A) Firing events are detected from day 5 in culture, this activity synchronises over time to form network bursts (B). After 21-28 days in culture the activity plateau indicating the cells are suitable for compound testing (C & D)

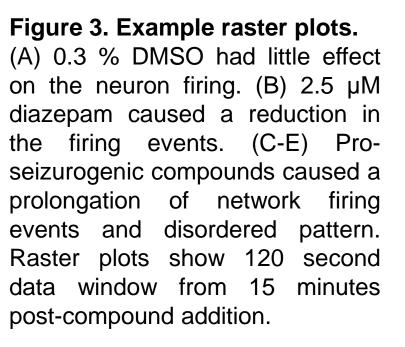
2 METHODS

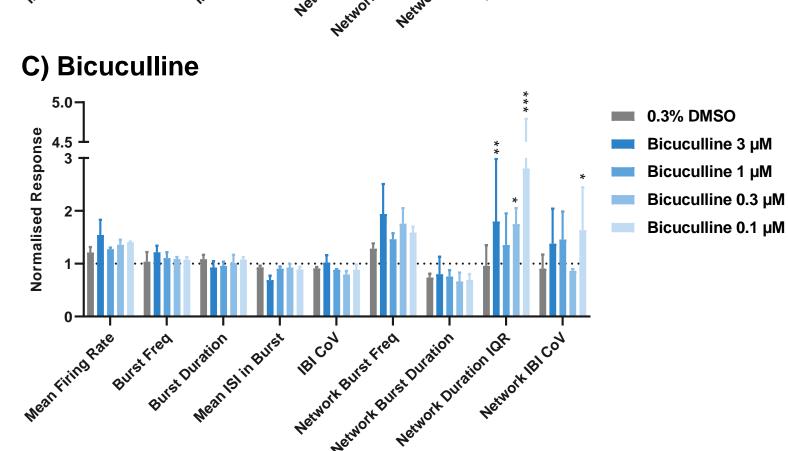
NeuCyte SynFire neurons plated in Axion MEA plates and cultured according to manufacturer's protocols

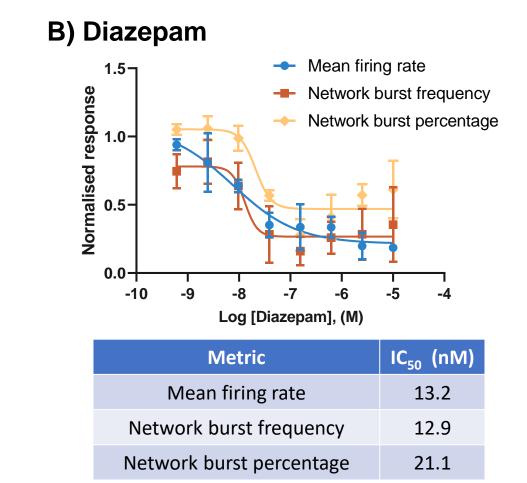

Activity recorded on Axion MEA for 28 days in culture or until activity was synchronised and plateaued

Compounds prepared at 10x test concentration in culture media and applied as 10% of the total well volume, final DMSO concentration did not exceed 0.3 %.




Data processed using neural metric tool (Axion BioSystems). Each well was normalised to the baseline recording from the day of treatment.




Metrics presented here are: mean firing rate, burst frequency (freq), burst duration, mean inter-spike interval (ISI) in burst, inter-burst

interval (IBI) coefficient of variance (CoV), network burst freq, network burst duration, network duration interquartile range (IQR), and

(A) Diazepam caused a significant reduction in network firing and burst events. (B) Concentration response curve for diazepam showed a IC₅₀ comparable to literature values¹. (C) Bicuculline resulted in significant change in the network duration IQR and Network IBI CoV. Data presented from 15 minutes post-compound addition. Data shown as mean ± SD (N>3). * P<0.05, ** P<0.01, *** P<0.001.

CONCLUSION

- NeuCyte SynFire co-culture system including Glutamatergic, GABAergic neurons and astrocytes has been established at CRL.
- Neuronal activity monitored with Axion Maestro Pro MEA platform shows that cells display synchronised network activity from 21 in vitro.
- Compound profiling of known pro-seizurogenic compounds display altered network activity.
- Compound response curves can be produced. Diazepam showing similar IC₅₀ to literature data¹.

¹ Bader *et al.* PLoS One. (2017) 13;12(10):e0186147. doi: 10.1371/journal.pone.0186147.